

Mesurer les enjeux

Améliorer le confort de mon bâtiment

Connaître les outils

Mesurer, analyser, évaluer les résultats

SIMULATIONS ET MODÉLISATIONS

Lorsqu'il décide la rénovation de son bien, le propriétaire « non professionnel du bâtiment » ne se doute pas forcément de tous les outils d'aide à la décision existants. Nombre d'entre eux sont très récents et utilisent la puissance de modélisation et de simulation de l'outil informatique. Bien qu'ils soient surtout basés sur des techniques constructives récentes et industrielles, ces outils permettent d'anticiper la majorité des choix, d'éviter beaucoup d'erreurs, de quantifier, de vérifier, de qualifier et de viser un niveau de performance ou une somme d'impacts environnementaux.

UN INTÉRÊT PLURIEL pour aborder l'éco-rénovation

Recourir aux modélisations informatiques permet de :

- comparer plusieurs variantes techniques, de performances ou de confort,
- comprendre et éviter des pathologies complexes,
- décider des meilleurs choix possibles selon plusieurs critères et indicateurs de qualité,
- échapper au raisonnement du seul coût d'investissement,
- vérifier des états de fonctionnement et de confort,
- communiquer avec des spécialistes expérimentés.

DES ÉTUDES : quand, pourquoi, qui ?

Ces études sont à mener parfois en phase de diagnostics (thermique, pathologies complexes, détermination de potentiels) mais essentiellement en phase d'avant-projet (voir fiche développer son PROJET (\%).

Elles alimentent et justifient les décisions, les dimensionnements, les coûts immédiats, déclenchés et induits, les prises de consciences environnementales.

Elles sont généralement réalisées par des architectes et des bureaux d'études thermiques.

- DES LIMITES : savoir interpréter les résultats

Les connaissances purement techniques et l'usage d'outils informatiques peuvent laisser croire que la maîtrise des sujets est totale. Ce n'est pas tout à fait vrai. Les résultats «machine " obligent à la plus grande prudence et doivent toujours être analysés avec esprit critique par un professionnel.

Chaque logiciel possède ses propres limites ; c'est en pleine conscience de celles-ci qu'il faut interpréter les résultats. Ils sont toujours à confronter à la compréhension des phénomènes physiques et naturels que peut avoir un homme «de terrain» qui a accumulé une expérience pratique et beaucoup de bon sens par l'observation. C'est notamment là que les savoirs de l'ingénieur et ceux de l'artisan confirmé se complètent.

- déterminer LE CONFORT D’ÉTÉ

maîtriser les apports de chaleur

Les simulations thermiques dynamiques permettent la modélisation de l'évolution des températures dans chaque espace d'un immeuble tout au long de l'année. Elles considèrent toutes les composantes du bâti, du contexte et de l'occupation.
Elles établissent des courbes de températures instantanées, cumulées, déterminent le degré d'inertie du bâtiment et les taux d'inconfort. Elles sont également utilisées pour déterminer et optimiser les besoins en chaleur et en froid dans la mesure où ces simulations permettent d'approcher des valeurs de consommations réelles, dèterminées par un usage particulier. Ceci n'est pas le cas des logiciels réglementaires et de diagnostic énergétiques qui déterminent des consommations conventionnelles.

Dans les bâtiments basse consommation ou fortement isolés,
le confort estival devient le critère d'appréciation principal. La mauvaise gestion des apports solaires et les apports internes peuvent rendre un bâtiment impropre à sa destination.
Dans les bâtiments de référence (voir exemples) les éléments qui participent au confort d'été sont auvents, épaisseur des murs, matériaux à faible diffusivité thermique.

Simulation thermique dynamique Hunspach : répartition décroissante des températures par pièce pendant un an, météo normale, avec surventilation et protections solaires.

En abscisse le total des heures où une température donnée est dépassée, en ordonnée les températures ambiantes atteintes.

Par exemple : dans la zone ou pièce 1, la température de $25^{\circ} \mathrm{C}$ est dépassée pendant env. 80 heures. Les autres pièces entre 0 et 25 heures seulement. Le confort général du bâtiment peut être considéré comme satisfaisant.

mesurer l'étanchéité à l'air du bâtiment

La perméabilité à l'air d'un bâtiment conditionne ses consommations énergétiques (déperditions directes), des effets d'inconfort en toutes saisons (courants d'air et difficultés du contrôle des conditions climatiques) et des risques de dégradation des matériaux (migrations et accumulations d'humidité, décollement d'enduits, moisissures, etc.). Il est possible aujourd'hui de la mesurer (détermination
 d'un débit de fuite) et de détecter les points de fuites.
Aussi bien en diagnostic dans l'existant qu'en cours et fin de chantiers, ces tests sont aujourd'hui pertinents, voire obligatoires dans le neuf. Ils permettent d'éviter les problèmes précités et d'atteindre les objectifs de performances énergétiques prévues.
La préparation du bâtiment est sommaire et une porte soufflante est installée sur une baie de l'immeuble. Un ventilateur crée une surpression entre intérieur et extérieur. Des mesures sont alors effectuées par les capteurs de pression et le logiciel et déterminent le débit de fuite, Q4 en France (en $\mathrm{m}^{3} / \mathrm{h} . \mathrm{m}^{2}$ de pf) et N 50 en Europe (en Volume/h). Pendant ce temps, un fumigène et des poires à fumée permettent de trouver et de visualiser les points faibles des enveloppes qu'il conviendra de restaurer. Ces tests sont avantageusement et couramment complétés par des visualisations par caméras thermiques (uniquement possibles en période de chauffage).
Sur les bâtiments de rėférence (voir exemples), les défauts d'étanchéité se trouvent notamment au niveau de la charpente, des menuiseries, du conduit de cheminée,...

simuler L'ÉCLAIRAGE NATUREL

Les consommations électriques, notamment celles liées à l'éclairage et aux usages domestiques, deviennent les principaux postes de dépenses, en logement et dans le tertiaire. Permettre à un espace de bénéficier au maximum de la lumière du jour, du meilleur éclairement possible, fait partie intégrante d'une démarche de qualité environnementale et architecturale. Les logiciels spécialisés intègrent les composantes de la pièce (proportions, couleurs, détails des baies et vitrages) et représentent la valeur et la répartition de la lumière sur chacune des parois. Ils calculent l'homogénéité, les intensités lumineuses et l'autonomie en lumière naturelle des espaces. Ils sont également en mesure de simuler les effets de la lumière artificielle. Ainsi, ils permettent d'améliorer les conditions de confort d'un espace ; en réhabilitation, cette action devient rapidement pertinente.
répartition de la lumière dans une pièce, avant / après : la baisse de luminosité due à l'ajout disolant est à compenser (choix des couleurs, qualité vitrages, agencements adaptés)

simuler LES MIGRATIONS D'HUMIDITÉ DANS LES PAROIS

comprendre les murs anciens

Dans une paroi, l'eau est présente sous 2 formes : liquide (pluie en surface des enduits, fuites structurelles et remontées par capillarité dans l'épaisseur) et vapeur (températures et humidités relatives de l'air intérieur et extérieur générant un différentiel de pression et les migrations de molécules d'eau à travers les matériaux). L'eau contenue ne peut être évacuée que par évaporation.
Si son évaporation est entravée (enduits et revêtements imperméables), l'eau se concentre dans la paroi et progresse par capillarité. Les matériaux arrivent rapidement à saturation et se dégradent petit à petit : tassement, risque de gel, moisissures, fissuration, décollement des enduits.

simuler les remontées capillaires

Dans le même registre, mais à des endroits singuliers, le comportement des matériaux en terme de gestion de la pression capillaire et d'exposition directe aux intempéries peut également être modélisé. En pied de façades, elle explique le vieillissement prématuré des enduits, des lisses basses en bois, voire des maçonneries. Associé au gel, les teneurs en eau des matériaux sont à apprécier finement pour éviter tout vieillissement accéléré.

déterminer les matériaux qui favorisent l'évaporation de la vapeur d'eau

Thème central de recherches aujourd'hui, notamment dans les projets de réhabilitation énergétique du patrimoine ancien, les effets des mouvements d'humidité à travers les parois sont modélisables et forts instructifs. Jusqu'alors peu intégrées et mal appréciées (méthode incomplète), ces études spécialisées évitent le déclenchement de toute nouvelle pathologie en localisant le point de rosée et qualifiant l'évolution et la saturation en eau des matériaux dans leur masse et à leurs interfaces.
Elles permettent ainsi de déterminer avec précision les bonnes valeurs de perméabilité à la vapeur d'eau des matériaux (Mu et Sd), de choisir le bon matériau en fonction de sa capacité d'absorption, d'aération ou d'étanchéité. En fonction de son épaisseur et des conditions hygrothermiques de la paroi, les phénomènes varient de façon conséquente

Exemple de Ludwigswinkel - isolation intérieure : évolution de la teneur en eau de lísolant à la jonction avec le grès sur 4 ans, avec différents pare-vapeurs. Les seuils de saturation des isolants sont connus. Même si la tendance générale n'aboutit pas à l'augmentation de la teneur en eau mais à une stabilisation apparente, seul un pare-vapeur à Sd variable parfaitement posé et une laine de mouton semblent garantir la pérennité de lisolant. Toutes les autres situations conduisent à leur saturation quasi permanente, et donc leur dégradation.

déterminer les épaisseurs d'isolants

Au-delà de leur simple potentiel thermique, les isolants n'ont pas besoin d'être surdimensionnés à outrance ; des épaisseurs rentables, de confort et n'engageant aucune dégradation sont à rechercher.
Ainsi, la comparaison en terme de bénéfice investissement / économies / complications est pertinente avant de figer toute prescription. (cf. fiche choisir ses MATÉRIAUX \Rightarrow)

VICIIANCE

- Traiter les parois pour garantir une étanchéité à l'air performante oblige à assurer la ventilation de tous les locaux. L'assurance de la meilleure Qualité de l'Air Intérieur (QAI) devient un objectif prioritaire directement lié à la santé des occupants.
- Isolation intérieure ou extérieure ? L'isolation intérieure réduit l'inertie et la capacité de régulation hygrothermique du bâtiment, tout en accentuant les ponts thermiques ; ils sont préjudiciables car sources de pertes de calories et de dégradation des matériaux à terme. L'isolation extérieure évite ces phénomènes, mais dénature souvent l'aspect des bâtiments.
- Ne pas confondre apports de lumière (lux) et apports d'énergie (calories). Il convient de réguler les apports solaires en toutes saisons et tous points du bâtiment: les permettre au maximum en hiver, les éviter en été et à certains moments en intersaisons Dans les bâtiments fortement isolés, l'addition des apports externes aux apports internes est contrindiquée en période estivale et génère des conditions d'inconfort réelles.

INDICATEURS

Etanchéité à l'air : une maison individuelle performante doit atteindre un coefficient Q4 Pasurf exprimé en $\mathrm{m} 3 / \mathrm{h} / \mathrm{m}^{2}$ de parois froides en France et coefficient N50 en Volume/h ailleurs en Europe, ramenés à une surface totale de fuite en cm^{2}. Un Q4 < 0,6 sera visé ($\mathrm{N} 50<1$).

Facteur lumière du jour (FLJ) : a minima, on visera 200 à 250 lux pour une pièce à vivre ou un bureau (lecture, discussion, vues), 100 lux dans des circulations, 350 à 400 lux pour des ateliers etc. Plus le FLJ est élevé, meilleure sera l'autonomie en lumière naturelle d'une pièce et moins les besoins en lumière artificielle seront importants.

Confort d'été et d'hiver : pour un confort optimal, les températures intérieures doivent être les plus homogènes possibles (autour de 19° à 22°) et l'humidité relative doit demeurer stable et moyenne (entre 40% et 60%). En conditions climatiques estivales normales, on visera un seuil de $27^{\circ} \mathrm{C}$ et un delta de $3^{\circ} \mathrm{C}$ entre intérieur et extérieur à ne franchir qu'environ 10% du temps d'occupation ou 50 heures au maximum. La régulation de la température et de l'humidité peut s'opérer par la structure physique des matériaux qui constituent les espaces : inertie ou masse volumique, hygroscopie et perméabilité.
(cf. fiche choisir ses MATÉRIAUX -)

synthèse des résultats, performances avant / après

$>$ @ toutes les études détaillées sont téléchargeables en annexes (voir lien sur la pochette)

- rappel des actions retenues POUR ATTEINDRE LE FACTEUR 4

Enveloppe : Isolation Thermique Intérieure (ITI) murs et dalles basses avec 10 à 12 cm disolants pour un R de $2,5 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}$, protection par pare-vapeur à Sd variable.
Toiture : Isolation des combles perdus (Hunspach) ou des pans de toiture (Ludwigswinkel) avec environ 30 cm pour un R de $5 \mathrm{~m}^{2}$. KW.
Fenêtres : Remplacement des fenêtres avec double vitrage ou double fenestrage pour atteindre un Uw inférieur ou égal à $1,5 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$.
Chauffage : Remplacement des poêles à fuel et convecteurs électriques par une seule chaudière centrale (à pellets de bois ou gaz à condensation), distribution des calories par eau chaude et diffusion par radiateurs à thermostats (conservation des poêles à bois d'appoint non considérés dans calculs réglementaires).
Ventilation : Ventilation mécanique Simple Flux Hygroréglable de type B.
Eau Chaude Sanitaire : Production d'ECS centralisée via chaudière gaz à condensation ou à bois pellets, ballon 300L.
Etanchéité à l'air: Traitement de l'étanchéité générale de l'enveloppe : pare-vapeurs parfaitement posés, fenêtres parfaitement étanches (dormants sur supports, joints, ouvrants, pare-closes), remplacement et adaptations des portes extérieures, traitement spécifique de chaque traversée de réseaux (électrique, évents, cheminées).

- CONSOMMATIONS CONVENTIONNELLES selon réglementations thermiques RTex et EnEV
- MAISON COUR À PANS DE BOIS À HUNSPACH
- MAISON BLOC EN PIERRE À LUDWIGSWINKEL

RTex - 5 postes
Chauff.+ECS+VMC+Eclairage + Aux.

EnEV - 2 postes
Chauffage + ECS

RTex - 5 postes
Chauff.+ECS+VMC+Eclairage + Aux.

EnEV - 2 postes
Chauffage + ECS

89 bois

 FACTEUR 2 165

Les valeurs diffèrent entre l'approche réglementaire allemande (EnEV) et française (RTex). Pour cette comparaison, elles ont été ramenées à une unité commune, les kWh d'Energie Utile par mètres carrés habitables et par an. Toutefois l'objectif cible est atteint et plutôt homogène dans les deux cas.
(en kWhEU/m²SHAB.an - en bleu avant travaux/existant, en noir après rénovation)

Les écarts sont ici conséquents et interrogent les valeurs cibles d'un même objectif de Facteur 4 entre deux pays.

RÉSULTATS POUR LE PROJET DE HUNSPACH

- SIMULATIONS thermiques et hygroscopiques dynamiques

- ISOLANTS INTÉRIEURS FIBREUX

Cet exemple illustre l'effet de différents parevapeurs sur la teneur en eau de l'isolant intérieur (en abscisse le temps, ici 10 années, en ordonnées l'évolution de la teneur en eau en \%age de masse sèche). En fonction de leur type, leur seuil de saturation est atteint. La laine de mouton semble la plus indiquée dans tous les cas.

- INCONVÉNIENTS D'UNE ISOLATION FORMANT BARRIÈRE A LA VAPEUR D'EAU

Mais ce résultat est à interpréter, car le logiciel utilisé privilégie l'eau transportée depuis l'extérieur via les enduits et le torchis (très hygroscopiques) alors qu'en réalité les parois sont protégées de la pluie par les
auvents, voire isolées par l'extérieur (bardages sur pignons exposés). Il faut en déduire que les protections les enduits et le torchis (très hygroscopiques) alors qu'en réalité les parois sont protégées de la pluie par les
auvents, voire isolées par l'extérieur (bardages sur pignons exposés). Il faut en déduire que les protections physiques sont toujours à maintenir en état.

Les isolants synthétiques et étanches sont à éviter, surtout en isolation intérieure et d'autant plus sur des murs naturellement « respirants» tels les torchis ou les pierres.

Cet exemple permet de mettre à jour les inconvénients d'une isolation avec des produits formant barrière à la vapeur d'eau (panneaux de polystyrène, de polyuréthane, isolants synthétiques, minces ou sous vide) En abscisse le temps, ici 7 années, en ordonnées l'évolution de la teneur en eau en \%age de masse sèche des éléments de colombages.
Sur la globalité de la poutre, la teneur en eau augmente rapidement. La limite de 20\% de masse sèche est atteinte à partir de la 6ème année.
A linterface avec lisolant, la teneur en eau de la poutre ne se stabilise pas et augmente d'année en année l'isolant empêche le bois de se sécher vers l'intérieur. Sur la couche limite de la poutre à l'interface avec le torchis, la teneur en eau est très élevée, quelle que soit la nature de l'isolant (avec tous les isolants testés).

Rheinlandpfalz
menstroum der hinazzon.

BEZIRKS
VERBAND
VERBAN

